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Absiract

A new parallel computing structure of the
systolic array type for implementing the Kalman
filter for state~space estimation is presented.
This corresponds to the adjustment of Kalman
filter algorithms to the type of the Faddeev
algorithm. The Faddeev algorithm provides a
wide range of matrix computational capabilities
and it maps easily intoa concurrent systolic
array architecture. The special arrangement
for the data flow mapping from Kalman filter to
Faddeev algorithm, and from Faddeev algorithm
to architecture are presented

Introduction

The Kalman filter has been successfully appl ied
to many signal processing applications,
including target tracking, adaptive controls,
radar signal processing, on-board calibration
of inertial systems, and in~flight estimation
of aircraft controls and failure-proof systems
{1-6]. The applicability of the Kalman filter
to real-time processing problems is generally
limited, however, by the filter's relative
computational complexity [5, 6, 7]. 1In this
paper, therefore, the Kalman filter is
considered for parallel processing, especially
in the systolic array processor which may be
implemented as special chips by using VLSI
technology.

First of all, the Kalman filter algorithm is
modified to be the type of Faddeev algorithms
£8, 9, 10]. The Faddeev algorithm is easily
systematized for matrix calculations in a way
that is highly desirable from an architectural
point of view. On the other hand, the discrete
Kalman filter is based on linear algebraic
operations, i.e.; matrix-vector and matrix-
matrix multiplications and additions. It is
natural to arrange discrete Kalman filter
algorithms into a form of Faddeev algorithms to
maximize the capability of hardware
implementation of systolic arrays. One of the
more important features of this proposed
algorithm is that it avoids the matrix inverse
computation in the discrete Kalman filter
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algorithms and obtains the values of desired
results directly at the end of the forward
course of the computation, resulting in a
considerable savings in added processing and
storage. Secondly, since the Gaussian
elimination procedure is applied through the
computation, the numerical stability is
obtained. Thirdly, the parallel, modular
computer architecture which is consisted of
systolic processor provides simultaneous high
throughput and a capability for a wide variety
of linear algebraic operations.

In the following sections, we describe, 1in
order, the Kalman filter, the Faddeev
algorithm, the proposed implementation, and the
2-Dimensional systolic array architecture

Kalman Eilter

Kalman filters have been shown to be the
optimal Tinear estimator in the least square
sense for estimating dynamic system states in
linear systems. The Kalman filter updates
state estimation based on prior estimates and
observed measurements, It consists of the
model of the dynamic process which performs the
function of prediction and a feedback
‘correction scheme. The measurements can be
processed as they occur, and there is no need
to store any measurement data., However, all
the associate matrices which describe the
system dynamic, measurement system, and noises
are assumed to be known. Conventional discrete
time-varying Kalman filtering process involves
the propagation of state estimates and error
covariance matrices from time sample to next
time sampie. Discussions and applications on
Kalman filter can be found in many 1iterature
[1-6].

The following equations define a general
dynamic system and a measurement system.

x(k + 1) = & (k)x(k) + w(k) (D

z(k)

n

H{k)x(k) + v(k) (2)

®(k) is a nxn matrix called the state
transition matrix which describes the plant.
x(k) is the state vector with n-dimension, w(k)
is a p-vector called the disturbance. z(k) is
a m-vector termed the measurement vector, vik)
is also a m~vector called the measurement noise
vector. H(k) is a mxn matrix called the
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measurement matrix. The disturbance w(k) and
noise v(k} are assumed to be zero mean Gaussian
white noise sequences with covariance matrices
Q(k) and R(k), respectively, Furthermore,
sequences w(k) and v(k) are assumed to be
statistically independent. The Kalman filter
is described by the following equations under
assumptions that matrices a(k), T(k), H(k),
R(k), and Q(k) are known.

K(k/k=1) = & (k~1)%(k=-1/k~1) (3)
P(k/k-1) = @k-1)P(k-1/k=1) & (k=1) + Q(k-1) (4)
P~Lik/k) = P~lik/k-1) + HTGOR™H(KIH(K) (5)
K(k) = P(k/KIHT (KIRTL (k) (6)
Az (k) = z(k) = H(k)IX(k/k-1) N
X(k/k) = x(k/k=1) + K(k)Az(k) (8)

k=1, 2, -~ = =

Initial conditions are given as follows:

%(0/0) = 0

PO/0) = P(O) or P ieozo) = P L

i

Note that matrices P(k/k) and P(k+1/k) are
commonly called error covariance matrices.
Equations (3) and (4) are referred as time
updates and equations (5), (6), and (8) are
referred as measurement updates. These filter
equations are computed in order as 1listed from
equations (3) to (8).

Faddeev Algorithm

The Faddeev algorithm can be illustrated by the
simple case of finding CX+D, given AX=8, where
A, B, C, and D are known matrices, and X is an
unknown matrix. If these matrices are written
in the form

and one adds a suitable combination of the rows
of Aand B to -C and B, or
A [B
- (9}
—-C+WA | DtWB
i

where W specifies the appropriate 1inear
combination, such that the lower left hand side
of (9) is zero, then CX+D will appear on the
Tower right hand sides e.g.;
|
AlB

0 | CX+D

This results because we have W=CA™! so that
D+WB=D+CA™1B, or since AX=B, D+WB=D+CX. As
shown in Figure 1, numerous matrix operations
such as mul tiplication, addition, and linear
system solution are possible by selective
entries in the four quadrants. In a sense,
then, the Faddeev algorithm is programmable by
simply positioning the data appropriately
before calculations begin.

AT ol
-Il0 Al B , plp
-I] 0
_148;+
Z B -
clo 2B ol o
I1|B
cloD D+ C8
Figure 1. Examples of variety of matrix

operations possible with Faddeev algorithm.

The simplicity of the algorithm is due to the
absence of a necessity to actually identify the
multipliers of the rows of Aand the elements
of B; it is only necessary to "annul the last
row." This can be done by orthogonal
triangularization, a numerically stable
procedure, combined with an equally stable
Gaussian elimination procedure.

One of the more important features of this
algorithm 1is that it avoids the wusual
backsubstitution or solution to the triangular
Tinear system and obtains the values of the
unknowns directly at the end of the forward
course of the computation, resulting in a
considerable savings in added processing and
storage.

The Proposed Implementation

Kalman filter algorithms are adjusted to be the
type of Faddeev algorithm in this section.
Computations are cyclically propagated through
the following ordered set of passes. Note that
the new data could be shifted into the array
from the top, row by row as the calculation
proceeds, so that there would be no delay in
starting the next matrix computation.

1st pass:

L)

Iix(k=-1/k=1)

X (k=1/k=1)

X(k/k=1)

o

2nd pass:

PLk-1/k-1)|0T(k-1)  P~L(k-1/k=1)] 0T (k1)
|

>

-@(k—l)]Q(k—l) =9 (k~1)|P(k/k-1)
|
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3rd pass:

R(k) |I R(k)II
L >
-HT(k) |0 —HT(k)‘HT(k)R'l(k)
4th pass:
P(k/k-1) |I P(k/k-l)'I
- >
-1/0 —I‘P'l(k/k—l)
5th pass:
I]H(k) I}H(k)

>

—HT(k)R"l(k)’P'l(k/k-l) ~HT(k)R'l(k)‘P"l(k/k)

6th pass:
P~Liksk) (T R P"l(k/k)’HT(k)R'l(k)
-HT (R k) |0 -IJK(k)
7th pass:
I |x(k/k=1) R I |x(k/k=1)
H(K) [z(K) H(K) {Az(K)

~K(k) | X(k/k=1) ~K (k) [X(k/K)

Note that the results (lower right quadrant) of
each pass in general, need to be stored and are
used in later passes as new entries.

Architecture

A general architecture is proposed to process
all eight passes as mentioned in the previous
section. To fit the type of Faddeev algorithm,
the number of columns of the matrix (lower left
quadrant) should be less than or equal to that
of the matrix (upper left quadrant).

Fortunately, all eight passes meet this
requirement so that the matrix (lower left
guadrant) will be annulled row by row. This
can be done by the ordinary Gaussian
elimination. However, Gaussian elimination in
general requires pivoting, and the pivoting
stratagy is not suited to a systolic array
since it may require global communication for
pivot section. The neighbor pivoting technique
introduces a zero to a row by subtracting a
multiple of an adjacent row from it
interchanging the two rows when necessary to
prevent the multipie from exceeding unity [11].

This process is shown in the modified Faddeev
algorithm.

Modified Faddeev Algorithm:

Al B T’NB

| D -C + WT l D+ WNB

where T 1is upper triangular, and M is
nonsingular (triangularization) matrix. Since
W=CT % the final result is G=D+ WMB. In
order to triangularize matrix A and to annul
matrix C, it is necessry to have a two-5tep
procedure. First, A is triangularized by
neighbor pivoting process (simultaneously
applied to B); second, C is annulled by
Gaussian elimination using the diagonal
elements of T as pivot elements. The square
processor arrangement for both
triangularization and annulling steps is shown
in figure 2 [8, 9]. Note that if A is identity
matrix (as shown in the passes 1, 5, 7, and 8)»,
then the triangularization process can be
omitted. However, to compute all 8 passes, the
size of the processor is 2n cells (row) by 2n
cells (column).

Summary

A novel scheme of implementing Kalman filtering
algorithms on a 2-dimensional systolic array is
presented. This systematized matrix
calculation is based on the type of Faddeev
algorithm. The calculation is performed with
two steps; they are triangularization process,
and annulling process. The 2-dimensional array
of PEs, connected in a nearest neighbor mesh,
which provides a high performance matrix
computing capability and could be easily
expandable for large size Kalman filtering
operations.
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